Soil Mechanics – Brief Review

Presented by: Gary L. Seider, P.E.
BASIC ROCK TYPES

• Igneous Rock (e.g. granite, basalt)
 • Rock formed in place by cooling from magma
 • Generally very stiff/strong and often abrasive

• Sedimentary Rock (e.g. shale, sandstone, limestone)
 • Rock formed from sediments (weathered rock) transported to position, heavily consolidated, and possibly cemented
 • Widely varying properties

• Metamorphic Rock (e.g. slate, marble)
 • Rock formed by metamorphosis (high temperature and/or pressure) of parent rock to form rock of a different type
 • Variable properties
What is a “Soil”?

• **Inorganic — Mineral**
 • Gravel, Sand, Silt, Clay are Soils
 • Must be formed from weathered or disintegrated rock

• **Mineral soil**
 • Sediments or other accumulation of mineral particles produced by the physical or chemical weathering of rock
 • Minerals are naturally occurring.
 • Minerals have a definite chemical composition.

• **Organic material**
 • Peat, Wood, humus are NOT Soils
 • Soil containing deposits derived from plant or animal matter; typically mixed with some mineral-based soil particles.
 • “Topsoil”
 • Peat
 • Other organic soils
BASIC SOIL TYPES

• Residual Soil
 • Soil formed in place by physical/chemical weathering of parent rock

• Transported Soil
 • Soil formed by transport and placement of soil particles by natural means (water, ice, wind)
 • Aeolian – deposited by wind
 • Alluvial – deposited by running water
 • Fluvial – river/stream deposition
 • Glacial – deposited by ice flow (glaciers)

• Fill
 • Soil formed by placement of soil particles by humans
 • Engineered fill – placed and compacted to standards
 • Random (Uncontrolled) fill

Characteristics of soil depend on how it was formed
Identification of Soil Layers

- “O” horizon: both fresh and decaying plant materials
- “A” horizon: mix of humus & minerals, usually black
- “B” horizon: mineral horizon – usually red or brown
- “C” horizon: mineral horizon – usually gravel, silt or clay
- “R” horizon: underlying rock
Soils Exist in Infinite Variety

Soil Properties Depend on Particle Size, Mineral Type, Water Content
Gravel

Rock Fragments

- 1/8” (3 mm) to 3” (76 mm) sizes
- Usually angular – large void spaces
- Granite, Limestone, trap rock, bank run, processed
- Can be loose to compact
Sand

Rock Fragments

- Usually angular - gritty feel
- Typically less than 1/8” (3 mm) in size
- If moist will form small clumps
- Falls apart if touched when dry
- Can be loose to very dense
Silt

Mineral Grains

• 1/16” or smaller
• Smooth to the touch
 • Weak when dry
 • Easily powdered
 • Shows fingerprints

• Fine grained
• Typically rounded
• Often stains hands
• Can Be Very Soft to Hard
Clays

Mineral Grains
• Smooth to the touch
 • Strong when dry
 • Difficult to crush
 • Shows fingerprints
 • Molds easily (pottery)

• Extremely small particles
 (0.003” [0.076 mm] and less)
• Almost no void space
• Can be very soft to hard
Organic Materials

• All decay (compress) over time – not good for anchoring or foundations.
• Most have an odor.
• Most are black in color.
• Most show roots, woody material, or bugs.

PEAT
Typically found in coastal areas
Usually thick deposits
SOIL PROPERTIES

• Classification
 • Weight-volume (density, water content, etc)
 • Gradation (particle size distribution)
• Index Properties
 • Atterberg limits
 • Penetration resistance
• Mineralogy

• Engineering Properties
 • Shear strength (ability to resist applied loads)
 • Hydraulic conductivity/permeability (ability to conduct water)
 • Compressibility (relates settlement to applied loads)
USCS Soil Classification

• Granular soils
 • Greater than 50% (by weight) retained by #200 Sieve
 • Classified primarily according to gradation and, to a lesser extent, on the -200 fraction
 • Sands - SP, SW, SM, SC
 • Gravels - GP, GW, GM, GC
 • Characteristics
 • Often difficult to sample
 • Behavior primarily related to density

• Fine-grained soils
 • Less than 50% (by weight) retained by #200 Sieve
 • Classified primarily according to Atterberg limits (plasticity)
 • Clays – CL, CH
 • Silts – ML, MH
 • Characteristics
 • Generally considered “cohesive” soils
 • Behavior primarily related to plasticity and drainage
Soil Particle Sizes

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Sieve Size</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulders</td>
<td>12” Plus</td>
<td>300 mm Plus</td>
</tr>
<tr>
<td>Cobbles</td>
<td>3” - 12”</td>
<td>75 - 300 mm</td>
</tr>
<tr>
<td>Gravels</td>
<td>Coarse: .75” - 3” No. 4 - .75”</td>
<td>19 - 75 mm 4.76 - 19 mm</td>
</tr>
<tr>
<td></td>
<td>Fine: No. 10 - No. 4 No. 40 - No. 10 No. 200 - No. 40</td>
<td>2 - 4.76 mm 0.42 - 2 mm 0.074 - 0.42 mm</td>
</tr>
<tr>
<td>Sand</td>
<td>Coarse: No. 10 - No. 4 No. 40 - No. 10 No. 200 - No. 40</td>
<td>2 - 4.76 mm 0.42 - 2 mm 0.074 - 0.42 mm</td>
</tr>
<tr>
<td></td>
<td>Medium: No. 10 - No. 4 No. 40 - No. 10 No. 200 - No. 40</td>
<td>2 - 4.76 mm 0.42 - 2 mm 0.074 - 0.42 mm</td>
</tr>
<tr>
<td></td>
<td>Fine: No. 10 - No. 4 No. 40 - No. 10 No. 200 - No. 40</td>
<td>2 - 4.76 mm 0.42 - 2 mm 0.074 - 0.42 mm</td>
</tr>
<tr>
<td>Fines (silts and clays)</td>
<td>Passing No. 200</td>
<td>0.074 mm</td>
</tr>
</tbody>
</table>

Fines (silts and clays): Passing No. 200
Soil Phases and Weight-Volume Relations

- Moisture Content: \(\omega = \frac{W_w}{W_s} \)
- Degree of Saturation: \(S = \frac{V_w}{V_v} \)
- Void Ratio: \(e = \frac{V_v}{V_s} \)
- Porosity: \(n = \frac{V_v}{V_t} \)
- Dry Unit Weight (Dry Density): \(\gamma_d = \frac{W_s}{V_t} \)
- Total Unit Weight: \(\gamma_t = \frac{(W_s + W_w)}{V_t} \)
- Saturated Unit Weight: \(\gamma_s = \frac{(W_s + V_v \gamma_w)}{V_t} \)
Atterberg Limits

Affinity for Water (Clays)

Very Dry | Solid State | Shrinkage Limit
 | |

Semisolid State | Plastic Limit

Plastic State | Plasticity Index

Liquid State | LL Limit

Very Wet

Increasing moisture content

ATTERBERG LIMITS

PL = Plastic Limit LL = Liquid Limit PI = LL-PL = Plasticity Index
SOIL STRENGTH

• Ability to Withstand Deformation (movement) Under Pressure or Force.

• Soil has Little or no Tensile Resistance

• Consists of Two Parts:
 • Friction Between Particles (Physical)
 • Cohesion (Chemical Bond)
Soil Shear Strength

\[P = (\sigma_1 - \sigma_3)A \]

\[\sigma_{cell} = \sigma_3 \]

\[\tau \]

\[\sigma \] (or \(\sigma_0 \))

Failure Envelope
SOIL SHEAR STRENGTH

Can Represent in Terms of Total or Effective Stresses

- In terms of total stresses (ignoring u)

$$s = c + \sigma \tan \phi$$

- In terms of effective stresses

$$s = \bar{c} + (\sigma - u) \tan \bar{\phi}$$
Consolidation Analogy

Spring - Soil Skeleton
Water - Pore Water in Soil

1 FT.

Valve

Saturated Clay Stratum in Nature

Pressure

Gauge

Spring

Analogy of Soil and a Spring
Consolidation Analogy

Load Causes Pressure Increase in Water

Force

Valve

1 FT.

Closed Valve

100

Excess Pressure

0
Consolidation Analogy

Open Valve

1 FT.

Force

Water Flows Outward Due to Excess Pressure - Spring Begins to Compress

95

0
Consolidation Analogy

Open Valve

Force

<1 FT.

Piston Lowers -- Load Gradually Transferred From Water to Spring as Pressure Drops
Consolidation Analogy

Excess Pressure Dissipated - Full Load Carried by Spring. Compression Stops

Equilibrium - Spring Compressed

0.6 FT.
Determination of Soil Strength Parameters

• Laboratory Testing
 • Unconfined compression tests (cohesive soils)
 • Triaxial tests
 • Direct shear tests

• In-situ (in-place) Testing
 • Standard penetration test (SPT)
 • Cone penetration test (CPT)
 • Test Pit

• Correlation with index properties
 • Least reliable, but cheapest
 • Often useful for preliminary design
Field Testing

• Test Holes
 • Backhoe
 • inexpensive
 • common

• Borings
 • expensive
 • specialized equipment
 • specialized training
Standard Penetration Test

- SPT “N-value” is number of blows of special hammer required to penetrate standard sampler 12 inches
 - 140-lb hammer
 - 30-inch drop
 - Penetrate total distance of 18-inches, measure the number of blows required for each 6-inch increment
 - Compute “N-value” by summing number of blows for last 12-inches of penetration
Drill Rig
Hollow Stem Auger

Drill Stem

Drop Hammer

6” Increment Marks
Boring Log

Project No.: 04-630
Project: Central Site Borings
Client: A.B. Chance Company
Boring No.: 1
Rig: CME 56
Location: NE Corner Pratt & Brick Sts.
Driller: L. Gottman

Subsurface Profile

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Description</th>
<th>Qd. (ft)</th>
<th>Qd. (ft)</th>
<th>D.P. Max.</th>
<th>Dr. Penetration Test</th>
<th>Standard Penetration Test</th>
<th>Blows/ft</th>
<th>Water Content %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ground Surface</td>
</tr>
<tr>
<td>0.75</td>
<td>Mottled Reddish Brown, Medium, (CL)</td>
<td>1</td>
<td>SS</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>2.00</td>
<td>Mottled Yellow Brown, Grading to Clay (CL)</td>
<td>2</td>
<td>SS</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3.00</td>
<td>Mottled Yellow Brown, Grading to Clay (CL)</td>
<td>3</td>
<td>SS</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7.75</td>
<td>Light Gray Mottled Yellow Brown Clay, Little Sand, Silt, (CH)</td>
<td>4</td>
<td>SS</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>10.5</td>
<td>Light Gray Mottled Yellow Brown Clay, Little Sand, Silt, (CH)</td>
<td>5</td>
<td>SS</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13.0</td>
<td>Yellow Brown Mottled Light Gray, Silt, (CH)</td>
<td>6</td>
<td>SS</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>15.0</td>
<td>Light Gray Mottled Yellow Brown Silt, Silt, (CL)</td>
<td>7</td>
<td>SS</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>20.0</td>
<td>Light Gray Mottled Yellow Brown Silt, Silt, (CL)</td>
<td>8</td>
<td>SS</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>22.0</td>
<td>Yellow Brown Mottled Light Gray Silt, Silt, (CL)</td>
<td>9</td>
<td>SS</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>30.0</td>
<td>Very Silt, (CL)</td>
<td>10</td>
<td>SS</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>32.5</td>
<td>Very Silt, (CL)</td>
<td>11</td>
<td>SS</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>33.5</td>
<td>Light Gray Mottled Yellow Brown Clay, Sand</td>
<td>12</td>
<td>SS</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

Drill Method: 3 1/4" HSA & SPT
Boring Started: 7-97-2004
Boring Completed: 7-97-2004
Groundwater Elev. During Drilling: 22
Groundwater Elev. @ Comp.: 22
Groundwater Elev. @ 65 Hrs.: 22
Boring Location:

Logging By: J. Sick
Hannibal Testing Laboratories, Inc.
4010 Pikes Gravel Road, P.O. Box 267
Hannibal, Missouri 63401, (573) 221-7714
Sheet 1 of 2
Boring Log

Project No.: 04-629
Project: Central Site Borings
Client: A.R. Chance Company
Boring No.: 1

Subsurface Profile

<table>
<thead>
<tr>
<th>Depth (Ft)</th>
<th>Description</th>
<th>QL Density, P.C.</th>
<th>Depth/Ext.</th>
<th>Number</th>
<th>Blowout</th>
<th>Grt. T.F.</th>
<th>Standard Penetration Test Blowout</th>
<th>Water Content %</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Very Silt, (CH)</td>
<td>2.00</td>
<td></td>
<td>13</td>
<td>25</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Gray Mottled Yellow Brown, Very Silt, (CH)</td>
<td>2.75</td>
<td></td>
<td>14</td>
<td>50</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Yellow Brown Mottled Light Gray, Very Silt, (CL)</td>
<td>2.78</td>
<td></td>
<td>15</td>
<td>59</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Light Gray, Silt, (CH)</td>
<td>3.00</td>
<td></td>
<td>16</td>
<td>59</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Mottled Yellow Brown, Silt, (CH)</td>
<td>3.50</td>
<td></td>
<td>17</td>
<td>59</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Yellow Brown Mottled Light Gray, Silty Sandy Clay, Trace of Gravel, Very Silt, (CL)</td>
<td>4.00</td>
<td>49.5</td>
<td>19</td>
<td>59</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Very Silt, Little Gravel, Silt 47 F., (CL)</td>
<td>3.50</td>
<td>49.5</td>
<td>19</td>
<td>60</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Dense Gravel, Hard, (CL)</td>
<td>4.50</td>
<td>49.5</td>
<td>20</td>
<td>60</td>
<td>49</td>
<td></td>
<td>28 %</td>
</tr>
</tbody>
</table>

Drill Method: J, M & SPT
Boring Started: 7-27-2004
Boring Completed: 7-27-2004
Tested By: R. Black
Logging By: J. Black

Groundwater Elev. During Drilling:
Groundwater Elev. @ Comp.:
Groundwater Elev. @ 6 Hrs.: -32.0
Boring Location:

Hubbell Testing Laboratories, Inc.
4813 Paris GRAVEL ROAD, P.O. BOX 137
HANNEBROOK, MISSOURI 63041 - (573) 221-2714
Sheet 2 of 2
Test Pits

- Exposes soil layers
 - look
 - color changes
 - feel samples
 - gritty?
 - smooth?
 - Poke
 - hard?
 - easy?
Estimation of Soil Properties

The following slides, may be used to estimate soil strength parameters, but is not a substitute for actual borings and testing.

• Granular Soils
 • Most commonly related to SPT N-value

• Cohesive Soils
 • Most commonly related to Atterberg limits
Relative Density vs. N-Values

<table>
<thead>
<tr>
<th>Relative Density</th>
<th>N-Values</th>
<th>Friction Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Loose</td>
<td>0 to 4</td>
<td><28°</td>
</tr>
<tr>
<td>Loose</td>
<td>4 to 9</td>
<td>28° to 30°</td>
</tr>
<tr>
<td>Medium Dense</td>
<td>10 to 29</td>
<td>31° to 35.5°</td>
</tr>
<tr>
<td>Dense</td>
<td>30 to 49</td>
<td>36° to 41°</td>
</tr>
<tr>
<td>Very Dense</td>
<td>50 to 80</td>
<td>41° to 50°</td>
</tr>
<tr>
<td>Extremely Dense</td>
<td>>80</td>
<td>?</td>
</tr>
</tbody>
</table>
Consistency of Cohesive (CLAY) Soils

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Consolidation History</th>
<th>Blows/ft N_{70}</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Soft</td>
<td>Normally Consolidated</td>
<td>0-2</td>
<td>Runs through fingers when squeezed</td>
</tr>
<tr>
<td>Soft</td>
<td>Normally Consolidated</td>
<td>3-4</td>
<td>Very easy to form into a ball</td>
</tr>
<tr>
<td>Medium</td>
<td>Normally Consolidated</td>
<td>5-8</td>
<td>Can be formed into a ball</td>
</tr>
<tr>
<td>Stiff</td>
<td>NC to OCR 2-3</td>
<td>9-15</td>
<td>Can make thumbprint w/ strong pressure</td>
</tr>
<tr>
<td>Very Stiff</td>
<td>Over Consolidated</td>
<td>16-30</td>
<td>Can scratch with thumbnail</td>
</tr>
<tr>
<td>Hard</td>
<td>Highly Over Consolidated</td>
<td>>30</td>
<td>Cannot be deformed by hand</td>
</tr>
</tbody>
</table>
Anchor Application Information

SOIL CLASSIFICATION DATA

<table>
<thead>
<tr>
<th>Class</th>
<th>Common Soil-Type Description</th>
<th>Geological Soil Classification</th>
<th>Probe Values in.-lb. (NM)</th>
<th>Typical Blow Count "N" per ASTM-D1586</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Sound hard rock, unweathered</td>
<td>Granite, Basalt, Massive Limestone</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>1</td>
<td>Very dense and/or cemented sands; coarse gravel and cobbles</td>
<td>Caliche, (Nitrate-bearing gravel/rock),</td>
<td>750 - 1600 (85 - 181)</td>
<td>60-100+</td>
</tr>
<tr>
<td>2</td>
<td>Dense fine sands; very hard silts and clays (may be preloaded)</td>
<td>Basal till; boulder clay; caliche; weathered laminated rock</td>
<td>600-750 (68 - 85)</td>
<td>45-60</td>
</tr>
<tr>
<td>3</td>
<td>Dense sands and gravel; hard silts and clays</td>
<td>Glacial till; weathered shales, schist, gneiss and siltstone</td>
<td>500 - 600</td>
<td>35-50</td>
</tr>
<tr>
<td>4</td>
<td>Medium dense sand and gravel; very stiff to hard silts and clays</td>
<td>Glacial till; hardpan; marls</td>
<td>400 - 500 (45 - 56)</td>
<td>24-40</td>
</tr>
<tr>
<td>5</td>
<td>Medium dense coarse sands and sandy gravels; stiff to very stiff silts and clays</td>
<td>Saprrolites, residual soils</td>
<td>300 - 400 (34 - 45)</td>
<td>14-25</td>
</tr>
<tr>
<td>6</td>
<td>Loose to medium dense fine to coarse sands to stiff clays and silts</td>
<td>Dense hydraulic fill; compacted fill; residual soils</td>
<td>200 - 300 (23 - 34)</td>
<td>7-14</td>
</tr>
<tr>
<td>7</td>
<td>Loose fine sands; Alluvium; loess; medium - stiff and varied clays; fill</td>
<td>Flood plain soils; lake clays; adobe; gumbo, fill</td>
<td>100 - 200 (11 - 23)</td>
<td>4-8</td>
</tr>
<tr>
<td>8</td>
<td>Peat, organic silts; inundated silts, fly ash; very loose sands, very soft to soft clays</td>
<td>Miscellaneous fill, swamp marsh</td>
<td>less than 100 (0 - 11)</td>
<td>0-5</td>
</tr>
</tbody>
</table>

Class 1 soils are difficult to probe consistently and the ASTM blow count may be of questionable value.

It is advisable to install anchors deep enough, by the use of extensions, to penetrate a Class 5 or 6, underlying the Class 7 or 8 Soils.
PISA® & Tough One® Holding Capacity

Soil Class vs. Holding Capacity

Note: Holding Capacities are based on average test data and are offered as an application guide only. These are ultimate values. They are the highest capacities that can be expected in a given soil class. Apply an appropriate safety factor against soil failure.
PISA® & Tough One® Holding Capacity

Note: Holding Capacities are based on average test data and are offered as an application guide only. These are ultimate values. They are the highest capacities that can be expected in a given soil class. Apply an appropriate safety factor against soil failure.

Soil Class vs. Holding Capacity

www.hubbellpowersystems.com
Soil Class vs. Holding Capacity

Note: Holding Capacities are based on average test data and are offered as an application guide only. These are ultimate values. They are the highest capacities that can be expected in a given soil class. Apply an appropriate safety factor against soil failure.
SQUARE-SHAFT “SS” SCREW ANCHORS

APPLICATION AND ORDERING INFORMATION

LEAD SECTIONS

<table>
<thead>
<tr>
<th>Catalog No.</th>
<th>Length</th>
<th>Helix Combinations</th>
<th>Std. Pkg./Pallet</th>
<th>Soil Anchor Holding Strengths - (lbs.) vs. Chance Soil Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>P012642-AE*</td>
<td>3 ft.</td>
<td>8" - 10"</td>
<td>1/20</td>
<td>Class 7: 19,000</td>
</tr>
<tr>
<td>P012642-EJ</td>
<td>3½ ft.</td>
<td>10" - 12"</td>
<td>1/20</td>
<td>21,000</td>
</tr>
<tr>
<td>P012642-AEJ*</td>
<td>5½ ft.</td>
<td>8" - 10" - 12"</td>
<td>1/20</td>
<td>26,000</td>
</tr>
<tr>
<td>P012642-EJN*</td>
<td>7 ft.</td>
<td>10" - 12" - 14"</td>
<td>1/20</td>
<td>29,000</td>
</tr>
<tr>
<td>P012642-AEJN</td>
<td>10½ ft.</td>
<td>8" - 10" - 12" - 14"</td>
<td>1/20</td>
<td>31,000</td>
</tr>
<tr>
<td>P012642-EJNS*</td>
<td>10½ ft.</td>
<td>10" - 12" - 14" - 14"</td>
<td>1/20</td>
<td>40,000</td>
</tr>
</tbody>
</table>

Note: Holding capacities are based on average test data and are offered as an application guide only. These are ultimate values. They are the highest capacities that can be expected in a given soil class. Apply an appropriate safety factor against soil failure.
HeliCAP(R) v2.0 Helical Capacity Design Software

• Microsoft® Windows® Bearing & Uplift Capacity Software

• Based on soil and anchor/pile inputs. The program returns theoretical capacities and installation torque.
Special Soil Problems

- Organic Soils – highly compressible
- Expansive Soils – shrink/swell potential
- Collapsible soils
- Sensitive soils
- Deep fills
- Seasonally Frozen Ground and Permafrost
Conclusion

- PDH Credit
 - Send email to tmstaele@hubbell.com
- Include
 - PDH in Subject
 - Topics for future Webinars
 - Feedback
- Questions